
N→C WANDERUNG VON 4-NITROPHENYLGRUPPEN BEI DER REAKTION VON 2-ALKOXY -1,3,4- THIADIA ZOLINEN MIT ACETYLENDICARBONSÄUREDIÄTHYLESTER Abfangreaktion eines heterocyclischen Carbens

G. Scherowsky, Karla Dünnbier und G. Höfle
Institut für Organische Chemie, Technische Universität Berlin, D-1000 Berlin 12, Germany
(Received in Germany 21 March 1977; received in UK for publication 3 May 1977)

Die hohe H/D-Austauschgeschwindigkeit und die außergewönlich leichte Protolyse der 1,3,4-Thiadiazoliumsalze 1 weisen auf eine deutliche Resonanzstabilisierung der heterocyclischen Carben Ylid Spezies 3 hin 1,2). Auch aus anderen Vorstufen sollten diese Spezies leicht zugänglich sein. Wir fanden, daß die in 2-Stellung alkoxy-, oder hydroxysubstituierten Thiadiazoline 2a-e schon in siedendem Benzol unter α-Eliminierung über die Carbene 3 in deren Dimere 4 übergehen. 2a-e erhielten wir aus 1a-e und HOR bzw H₂O unter Zugabe von Hünigbase.

Fuhrt man die thermische α-Eliminierung in Gegenwart von Acetylendicarbonester durch, so entstehen aus Δ - d nicht die Dimeren 4 sondern die Abfangprodukte 5α - b des Carbens 3 (60 - 70%).

Die Strukturen von <u>5a</u> – <u>b</u> sind belegt durch die spektralen Daten und die nachfolgenden Umwandlungsreaktionen.

Beweisend für die 1 \rightarrow 4 Wanderung des p-Nitrophenylkerns vom N zum C ist die Verschiebung der 13 C-Signale seiner zur Nitrogruppe metaständigen C-Atome von δ = 113.8 (in $\underline{2a}$) nach δ = 128.1 ppm (in $\underline{5a}$, s. Formelbild), sowie die der para-C-Atome von δ = 147.3 nach δ = 128.9.

Die C-C-Doppelbindung in <u>5b</u> läßt sich durch katalytische Hydrierung mit Pt/Eisessig zu <u>6b</u> nachweisen; das Azadiensystem durch Reaktion mit Diäthylpropinylamin, wobei in einer Diensynthese mit inversem Elektronenbedarf <u>7a</u> bzw. <u>7b</u> entstehen.

13C-NMR-Daten (CDCl ₃) 6b		
		•
C-2 C-5	163 169	C-1'' 122 C-2'' 129
C-1'	52	C-3'' 115
C-2' C-3'	50 123	C-4'' 161
C-4'	129	
C-5'	114	
C-6'	146	
<u>7</u> <u>b</u> ⁴⁾ δ (ppm) J _{CH} (Hz)		
C-1	136.6	m
C-2	116.2	•
C-3	58.5	q , $^3J = 2.5 Hz^{5)}$
C-4	90.65	s
C-4a	151.1	s
C-6	150.7	
C-1'	151.3	t, ³ J = 5 Hz
C-2'	127.7	
C-3'	122.6	
C-4'	146	•
C-1"	122.6	t, ³ J = 8 Hz
C-2''	129.8	
C-3''	114.6	
C-4"	161.6	

- Schmp.: $152 55^{\circ}$ C, IR (CHCl₃) 1735, 1665 cm^{-1} 1 H-NMR (CDCl₃) $\delta = 1.13$ (t, 3CH_{3}); 1.22 (t, CH_{3}); 1.65 (s, CH_{3}); 3.06; 3.27 (2q; 2NCH_{2}); 4.08; 4.25 (2q, 2OCH_{2}); 7.35 7.49 (m, 3H); 7.6 7.80 (m, 2H); 7.93 u. 8.11 (AA', BB'; 4H). MS 70 eV: m/e 564 (0.4%, M⁺), 491 (100%), 463 (22%), 461 (11.7%).
- Schmp.: 146° C, IR (KBr) 1735, 1670 cm^{-1} 1 H-NMR (CDCl₃) $\delta = 1.12$, 1.13, 1.15, 1.27 (4t, 4CH_{3}); 1.67 (s, CH₃); 3.13, 3.28 (2q, 2NCH₂); 3.87 (s, OCH₃); 4.10, 4.27 (2q, 2OCH₂); 6.97 u. 7.69 (AA', BB', 4H); 7.96 u. 8.13 (AA', BB', 4H). MS 70 eV: m/e 594 (0, 5%, M⁺); 521 (100%, M-CO₂Et); 492 (17%).

2098 No. 24

Als Mechanismus für die 1→4 Verschiebung des 4-Nitrophenylkerns schlagen wir eine [3 + 2] Cycloaddition des Acetylenesters an 3 vor, die zunächst zu einer dipolaren, einem Meisenheimer Komplex analogen Zwischenstufe 8 führt. Dieser Dipol stabilisiert sich unter Öffnung der Phenyl-N-Bindung zu 5.

Ist das Carben-Ylid <u>3</u> der Reaktionspartner des Acetylen-dicarbonesters, so müßte die beobachtete Reaktion auch bei der Protolyse des Oniumsalzes <u>1</u> in Gegenwart von Acetylenester eintreten. Tatsächlich entstehen <u>5a</u> – <u>b</u> zu 40% unter diesen Bedingungen.

5a - b sind keine Reaktionsprodukte der Dimeren 4a - b (die unter den Reaktionsbedingungen gebildet werden könnten) mit dem Acetylendicarbonester. Die Dimeren 4b reagieren mit Acetylendicarbonsäure-diäthylester in siedendem Benzol in anderer Weise. Unter Cycloeliminierung eines Moleküls p-Methoxybenzonitril und Cycloaddition eines Moleküls Acetylenester entsteht die Verbindung C₃₀H₂₅N₅O₉S₂ deren Struktur noch nicht eindeutig geklärt ist.

Der Deutschen Forschungsgemeinschaft danken wir für die finanzielle Unterstützung dieser Arbeit.

- 1) G. Scherowsky, Tetrahedron Lett. 1972, 3169
- 2) G. Scherowsky, Chem. Ber. 107, 1092 (1974)
- Für alle neuen Verbindungen liegen korrekte Elementaranalysen vor.
 IR: PE 237 u. 225; NMR: Varian EM 390 bzw. CFT 20; 8-Werte; MS: MAT 711
- 4) Die Zuordnung der Signale quartärer C-Atome erfolgte durch selektive Entkopplung: z.B. führt Einstrahlung im Bereich der Methylgruppe am C-2 zu einem Singulett für C-2 und einem Triplett für C-3. Einstrahlung im -N-CH₂-Bereich ergibt ein Quartett für C-1. Einstrahlung im Aromatenbereich ergibt Singuletts für C-1' u. C-6, sowie ein Quartett für C-4''.
- 5) Dieses Aufspaltungsmuster entsteht vermutlich durch eine ca. 5 Hz Kopplung mit den beiden Protonen in 2'-Stellung und eine 2.5 Hz Kopplung mit den Methylprotonen, wobei die vier äußeren Linien vom Rauschen verdeckt werden.